Effects of alkyl chain length, solvent and tandem Claisen rearrangement on two-dimensional structures of noncyclic isobutenyl compounds: scanning tunnelling microscopic study.
نویسندگان
چکیده
A series of isobutenyl compounds possessing various alkyl chain lengths (C(n)-1) with a carbon number of n = 14-21 were synthesized and their two-dimensional (2D) structures were systematically studied using scanning tunnelling microscopy (STM) at a highly oriented pyrolytic graphite (HOPG)/solvent interface. Two kinds of solvent, such as 1-phenyloctane (PO) and 1-phenylnonane (PN), were selected to examine the 2D structures by changing the alkyl chain length of the isobutenyl compounds. At the HOPG/PO interface, C(n)-1 molecules with shorter alkyl chains (n = 14-17) showed the same zig-zag shaped 2D structure regardless of the alkyl chain length, whereas an odd-even effect was recognized in C(n)-1 compounds with longer alkyl chains (n = 18-21) displaying the wavy and tripod structures, alternately. This odd-even effect was also observed at the HOPG/PN interface rather more distinctly. These results suggest that there is a specific alkyl chain length range that shows the odd-even effect in the present 2D system. After a tandem Claisen rearrangement (TCR), the 2D structures of all the C(n)-2 compounds formed were converged into the same linear structure, i.e. the odd-even effect was cancelled by the conformational limitation induced by the TCR.
منابع مشابه
Fabrication and transformation of novel two-dimensional tripod structures: structural modulation by alkyl chain length and tandem Claisen rearrangement.
Novel two-dimensional C3 symmetric (tripod) structures are fabricated from isobutenyl compounds possessing long alkyl chains. Alteration from tripod to wavy structures is accomplished by odd-even effect, and tandem Claisen rearrangement allows the transformation to the linear structures.
متن کاملKinetic and thermodynamic study of substituent effect on the Claisen rearrangement of para-substituted SI aryl ether: a Hammett study via DFT
In order to find the susceptibility of the Claisen rearrangement and next proton shift reaction of ally) aryl etherto the substiment effects in pan position, the kinetic and the:rmodynamie parameters are calculated at The33 LTP level using 6-3110. b asis set. The calculated activation energies for the rearrangements and protonshift reactions are around 3133 kcaUmol and 52.16 kcal/mol, nap.. liv...
متن کاملEffect of Alkyl Chain Length on Adsorption Behavior and Corrosion Inhibition of Imidazoline Inhibitors
Inhibition performances of imidazoline derivatives with different alkyl chain length for carbon steel in H2S acid solutions has been studied by polarization curves, AC impedance measurements, current transient, Atomic Force Microscopy (AFM) and Density Functional Theory (DFT) techniques. Results showed that the inhibition occurs through adsorption of the inhibitors molecules ...
متن کاملTandem RCM-Claisen rearrangement-[2+2] cycloaddition of O,O'-(but-2-en-1,4-diyl)-bridged binaphthols.
Attempted RCM of 2,2'-bis(allyloxy)-1,1'-binaphthyl resulted in a Claisen-type rearrangement of a postulated labile dioxacyclodecine proceeding at room temperature and followed by [2+2] cycloaddition. Structures of products were confirmed by X-ray crystallography. A mechanistic rationalisation based on relative stabilities of proposed intermediates and transition states is provided.
متن کاملA Tandem Scalable Microwave-Assisted Williamson Alkyl Aryl Ether Synthesis under Mild Conditions
An efficient tandem synthesis of alkyl aryl ethers, including valuable building blocks of dialdehyde and dinitro groups under microwave irradiation and solvent free conditions on potassium carbonate as a mild solid base has been developed. A series of alkyl aryl ethers were obtained from alcohols in excellent yields by following the Williamson ether synthesis protocol under practical mild condi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Organic & biomolecular chemistry
دوره 10 40 شماره
صفحات -
تاریخ انتشار 2012